How do you integrate #int x(1-x)sin(px) dx# using integration by parts?

1 Answer
Oct 8, 2016

#((x-x^2)cos(px))/p+((2x-1)sin(px))/p^2+(2cos(px))/p^3+C#

Explanation:

#I=int(x^2-x)sin(px)dx#

Integration takes the form: #intudv=uv-intvdu#

For this case, we will let:

#{(u=x^2-x" "=>" "du=(2x-1)dx),(dv=sin(px)dx" "=>" "v=-cos(px)/p):}#

Note that going to #dv# to #v# requires the integration of #sin(px)#, which can be done through a simple substitution.

Plugging these into the integration by parts formula, we see that:

#I=-((x^2-x)cos(px))/p-int(2x-1)(-cos(px))/pdx#

Simplifying:

#I=((x-x^2)cos(px))/p+1/p int(2x-1)cos(px)dx#

We will apply integration by parts once more for the remaining integral.

#{(u=2x-1" "=>" "du=2dx),(dv=cos(px)dx" "=>" "v=sin(px)/p):}#

Note that like before, integrating #cos(px)# is doable through substitution.

Replacing #1/p int(2x-1)cos(px)dx# with its equivalent found through integration by parts, we see that:

#I=((x-x^2)cos(px))/p+1/p[((2x-1)sin(px))/p-int(2sin(px))/pdx]#

Simplifying:

#I=((x-x^2)cos(px))/p+((2x-1)sin(px))/p^2-2/p^2intsin(px)#

This type of integration has already been performed twice before:

#I=((x-x^2)cos(px))/p+((2x-1)sin(px))/p^2-2/p^2(-cos(px)/p)#

#I=((x-x^2)cos(px))/p+((2x-1)sin(px))/p^2+(2cos(px))/p^3+C#