How do you integrate #int x^2 ln ^2x dx # using integration by parts?

1 Answer
Mar 8, 2017

#int x^2ln^2xdx = x^3/27(9ln^2x - 6lnx +2) +C#

Explanation:

We can integrate by parts using the logarithm as integral part, so that in the resulting integral we have a rational function:

#int x^2ln^2xdx = int ln^2x d(x^3/3)#

#int x^2ln^2xdx = (x^3ln^2x)/3 - 1/3 int x^3d(ln^2x)#

#int x^2ln^2xdx = (x^3ln^2x)/3 - 2/3 int x^3 lnx/xdx #

#int x^2ln^2xdx = (x^3ln^2x)/3 - 2/3 int x^2lnxdx #

Solve the resulting integral by parts again:

#int x^2lnxdx = int lnx d(x^3/3)#

#int x^2lnxdx = (x^3lnx)/3 - 1/3 int x^3 d(lnx)#

#int x^2lnxdx = (x^3lnx)/3 - 1/3 int x^3 dx/x#

#int x^2lnxdx = (x^3lnx)/3 - 1/3 int x^2 dx#

#int x^2lnxdx = (x^3lnx)/3 - 1/9x^3 +C#

Substituting in the first expression:

#int x^2ln^2xdx = (x^3ln^2x)/3 - 2/3( (x^3lnx)/3 - 1/9x^3 ) +C#

and simplifying:

#int x^2ln^2xdx = (x^3ln^2x)/3 - 2/9(x^3lnx) + 2/27x^3 +C#

#int x^2ln^2xdx = x^3/27(9ln^2x - 6lnx +2) +C#