How do you integrate #int x^2/sqrt(x^2-81)dx# using trigonometric substitution?

2 Answers

#I=x/2sqrt(x^2-81)+81/2ln|x+sqrt(x^2-81)|+C#

Explanation:

Here,

#I=intx^2/sqrt(x^2-81)dx#

Subst. #x=9secu=>dx=9secutanudu, and secu=x/9#

So,

#I=int (81sec^2u)/sqrt(81sec^2u-81)xx9secutanudu#

#=int(81sec^2u)/(cancel9canceltanu)xxcancel9secucanceltanudu#

#=81intsecu*sec^2udu#

#=81intsqrt(1+tan^2u)*sec^2udu#

Let, #tanu=t=>sec^2udu=dt#

#:.I=81intsqrt(1+t^2)dt#

#=81[t/2sqrt(1+t^2)+1^2/2ln|t+sqrt(1+t^2)|]+c#

Subst. back , #t=tanu#

#I#=#81[tanu/2sqrt(1+tan^2u)+1/2ln|tanu+sqrt(1+tan^2u)|]+C'#

=#81[sqrt(sec^2u-1)/2xxsecu+1/2ln|sqrt(sec^2u-1)+secu|]+C'#

Again subst. #secu=x/9#

#I=81[sqrt((x^2)/81-1))/2xxx/9+1/2ln|sqrt((x^2/81)-1)+x/9|]+C'#

#=81[sqrt(x^2-81)/(2xx9)*x/9+1/2ln|sqrt(x^2-81)/9+x/9|]+C'#

#=x/2sqrt(x^2-81)+81/2ln|(x+sqrt(x^2-81))/9|+C'#
#=x/2sqrt(x^2-81)+81/2[ln|x+sqrt(x^2-81)|-ln9]+C'#

#=x/2sqrt(x^2-81)+81/2ln|x+sqrt(x^2-81)|-81/2ln9+C'#

#=x/2sqrt(x^2-81)+81/2ln|x+sqrt(x^2-81)|+C#

where #C=C'-81/2ln9#

Jun 1, 2018

# x/2sqrt(x^2-81)+81/2ln|(x+sqrt(x^2-81))|+C.#

Explanation:

Kindly refer to the Second Method which does not use the

Trigo. Subst. to solve the Problem.

Prerequisite :

#intsqrt(x^2-a^2)dx=x/2sqrt(x^2-a^2)-a^2/2ln|(x+sqrt(x^2-a^2))|+c_1#,

&, #intdx/sqrt(x^2-a^2)=ln|(x+sqrt(x^2-a^2))|+c_2#,

Suppose that, #I=intx^2/sqrt(x^2-81)dx#.

#:. I=int{(x^2-81)+81}/sqrt(x^2-81)dx#,

#=int{(x^2-81)/sqrt(x^2-81)+81/sqrt(x^2-81)}dx#,

#=intsqrt(x^2-81)dx+81intdx/sqrt(x^2-81)#,

#=x/2sqrt(x^2-81)-81/2ln|(x+sqrt(x^2-81)|#

#+81ln|(x+sqrt(x^2-81)|#.

#:. I=x/2sqrt(x^2-81)+81/2ln|(x+sqrt(x^2-81))|+C#, as

Respected Maganbhai P. has already derived!.

Enjoy Maths.!