How do you integrate #int x^2e^(2x)# by parts?

1 Answer
Jan 24, 2017

#int x^2 e^(2x) dx = e^(2x)/4 (2x^2 -2x+ 1) +C#

Explanation:

Take #x^2# as finite part, so in the integration by parts the degree of #x# decreases:

#int x^2 e^(2x) dx = 1/2 int x^2 d(e^(2x)) = (x^2e^(2x))/2 - int xe^(2x) dx#

We can now solve the resulting integral by parts again:

#int xe^(2x) dx = 1/2 int x d(e^(2x)) = (xe^(2x))/2 - 1/2 int e^(2x) dx#

and we can now solve the last integral directly:

#int e^(2x) dx = 1/2e^(2x) + C#

Putting it all together:

#int x^2 e^(2x) dx = (x^2e^(2x))/2 - (xe^(2x))/2 + 1/4e^(2x) +C#