How do you integrate #int x^2sqrt(16-x^2)# using trig substitutions?
1 Answer
Explanation:
Solving for:
#I=intx^2sqrt(16-x^2)dx#
Make the substitution
#I=int16sin^2thetasqrt(16-16sin^2theta)4costhetad theta#
Bringing all the multiplicative constants out, including the
#I=256intsin^2thetacosthetasqrt(1-sin^2theta)d theta#
Since
#I=256intsin^2thetacos^2thetad theta#
Here, since
#I=64int4sin^2thetacos^2thetad theta#
#I=64intsin^2 2theta d theta#
Note that, according to the cosine double angle formula,
#I=32int(1-cos4theta)d theta#
#I=32intd theta-32intcos4thetad theta#
Integrating both (substitution can be used for the second integral, or just see it for the reverse chain rule of
#I=32theta-8int4cos4thetad theta#
#I=32theta-8sin4theta#
Since
#I=32arcsin(x/4)-8sin(4arcsin(x/4))+C#