How do you integrate #int x^3*dx/(x^2-1)^(2/3)#?

1 Answer
Aug 8, 2016

#intx^3/(x^2-1)^(2/3)dx=(3(x^2-1)^(1/3)(x^2+3))/8+C#

Explanation:

We have the integral:

#I=intx^3/(x^2-1)^(2/3)dx#

Using substitution, let #u=x^2-1#, so #du=2xdx# and #x^2=u+1#. Thus:

#I=int(x^2(x))/(x^2-1)^(2/3)dx=1/2int(x^2(2x))/(x^2-1)^(2/3)dx=1/2int(u+1)/u^(2/3)du#

Split up the fraction and then the integrals:

#I=1/2int(u^(1/3)+u^(-2/3))du=1/2intu^(1/3)du+1/2intu^(-2/3)du#

Integrate using the power rule for integrals:

#I=1/2(u^(4/3)/(4/3))+1/2(u^(1/3)/(1/3))=3/8u^(4/3)+3/2u^(1/3)=(3u^(4/3)+12u^(1/3))/8#

Continuing simplification:

#I=(3u^(1/3)(u+4))/8=(3(x^2-1)^(1/3)((x^2-1)+4))/8=(3(x^2-1)^(1/3)(x^2+3))/8+C#