How do you integrate #int (x+3)/(x^2(x-1) )# using partial fractions?

1 Answer
Apr 15, 2018

# 4ln|(x-1)/x|+3/x+C, or, ln(1-1/x)^4+3/x+C#.

Explanation:

Here is a way to find the Integral #I=int(x+3)/{x^2(x-1)}dx#,

without using partial fractions.

#I=int(x+3)/{x^2(x-1)}dx#,

#=int{x/{x^2(x-1)}+3/{x^2(x-1)}}dx#,

#=int[1/{x(x-1)}+3*(x-(x-1)}/{x^2(x-1)}]dx#,

#=int[1/{x(x-1)}+3{x/{x^2(x-1)}-(x-1)/{x^2(x-1)}}]dx#,

#=int[1/{x(x-1)}+3/{x(x-1)}-3/x^2]dx#,

#=int4/{x(x-1)}dx-3int1/x^2dx#,

#=4int{x-(x-1)}/{x(x-1)}dx--3*x^(-2+1)/(-2+1)#,

#=4int{1/(x-1)-1/x}dx+3/x#,

#=4{ln|(x-1)|-ln|x|}+3/x#.

# rArr I=4ln|(x-1)/x|+3/x+C, or, ln(1-1/x)^4+3/x+C#.

Enjoy Maths.!