How do you integrate #int (x+4)/(x^2+2x+4)# using trigonometric substitution?
1 Answer
Explanation:
We have:
#int(x+4)/(x^2+2x+4)dx=int(x+4)/((x+1)^2+3)dx#
Let
#=int(3+sqrt3tantheta)/(3tan^2theta+3)(sqrt3sec^2thetad theta)#
#=int(3sqrt3+3tantheta)/(3(tan^2theta+1))(sec^2thetad theta)#
Cancel the
#=int(sqrt3+tantheta)/sec^2theta(sec^2thetad theta)#
#=int(sqrt3+tantheta)d theta#
These are common integrals:
#=sqrt3theta+lnabssectheta+C#
Note that
#=sqrt3arctan((x+1)/sqrt3)+lnabssqrt((x^2+2x+4)/3)+C#
Using the log rule
#=sqrt3arctan((x+1)/sqrt3)+1/2lnabs((x^2+2x+4)/3)+C#
Using the
#=sqrt3arctan((x+1)/sqrt3)+1/2lnabs(x^2+2x+4)+C#
Since
#=sqrt3arctan((x+1)/sqrt3)+1/2ln(x^2+2x+4)+C#