How do you integrate #int x/(sqrt(1-x^4))# using substitution?
1 Answer
Sep 12, 2016
Explanation:
#intx/sqrt(1-x^4)dx#
Apply the substitution
#=1/2int(2xdx)/sqrt(1-(x^2)^2)=1/2int(costhetad theta)/sqrt(1-sin^2theta)#
Note that
#=1/2intd theta#
#=1/2theta+C#
From
#=1/2arcsin(x^2)+C#