How do you integrate #int x / [x^2 + 4x + 13] # using partial fractions?

1 Answer
Aug 10, 2016

#int x/(x^2+4x+13) d x=(l n(|x^2+4x+13|))/2-2/3 arc tan((x+2)/3)+C#

Explanation:

#int x/(x^2+4x+13) d x=?#

#2/2(x+2-2)=1/2(2x+4-4)#

#int x/(x^2+4x+13) d x=1/2 int(2x+4-4)/(x^2+4x+13) d x#

#int x/(x^2+4x+13) d x=1/2 [color(red)(int (2x+4)/(x^2+4x+13)d x)-4color(green)( int (d x)/(x^2+4x+13))] #

#" solve the integration ;"#

#color(red)(int (2x+4)/(x^2+4x+13)d x)#

#"substitute "u=x^2+4x+13" ; " d u=2x+4#

#color(red)(int (2x+4)/(x^2+4x+13)d x)=int (d u)/u=l n u#

#"undo substitution "#

#color(red)(int (2x+4)/(x^2+4x+13)d x)=l n(x^2+4x+13)#

#"now solve ;"#

#color(green)(-4 int (d x)/(x^2+4x+13))=-4 int (d x)/(x^2+4x+4+9)#

#color(green)(-4 int (d x)/(x^2+4x+13))=-4 int(d x)/((x+2)^2+3^2)#

#"substitute "#

#u=x+2" ; " d u= d x#

#color(green)(-4 int (d x)/(x^2+4x+13))=-4 int (d u)/(u^2+3^2)=-4/3 arc tan (u/3)#

#"undo substitution "#

#color(green)(-4 int (d x)/(x^2+4x+13))=-4/3 arc tan ((x+2)/3)#

#"Integration have solved"#

#int x/(x^2+4x+13) d x=1/2(l n(x^2+4x+13)-4/3 arc tan((x+2)/3))#

#int x/(x^2+4x+13) d x=(l n(|x^2+4x+13|))/2-2/3 arc tan((x+2)/3)+C#