#int x/(x^2+4x+13) d x=?#
#2/2(x+2-2)=1/2(2x+4-4)#
#int x/(x^2+4x+13) d x=1/2 int(2x+4-4)/(x^2+4x+13) d x#
#int x/(x^2+4x+13) d x=1/2 [color(red)(int (2x+4)/(x^2+4x+13)d x)-4color(green)( int (d x)/(x^2+4x+13))] #
#" solve the integration ;"#
#color(red)(int (2x+4)/(x^2+4x+13)d x)#
#"substitute "u=x^2+4x+13" ; " d u=2x+4#
#color(red)(int (2x+4)/(x^2+4x+13)d x)=int (d u)/u=l n u#
#"undo substitution "#
#color(red)(int (2x+4)/(x^2+4x+13)d x)=l n(x^2+4x+13)#
#"now solve ;"#
#color(green)(-4 int (d x)/(x^2+4x+13))=-4 int (d x)/(x^2+4x+4+9)#
#color(green)(-4 int (d x)/(x^2+4x+13))=-4 int(d x)/((x+2)^2+3^2)#
#"substitute "#
#u=x+2" ; " d u= d x#
#color(green)(-4 int (d x)/(x^2+4x+13))=-4 int (d u)/(u^2+3^2)=-4/3 arc tan (u/3)#
#"undo substitution "#
#color(green)(-4 int (d x)/(x^2+4x+13))=-4/3 arc tan ((x+2)/3)#
#"Integration have solved"#
#int x/(x^2+4x+13) d x=1/2(l n(x^2+4x+13)-4/3 arc tan((x+2)/3))#
#int x/(x^2+4x+13) d x=(l n(|x^2+4x+13|))/2-2/3 arc tan((x+2)/3)+C#