How do you integrate #int xsqrt(1-x^4)# by trigonometric substitution?
1 Answer
Explanation:
We have:
#I=intxsqrt(1-x^4)dx#
Let
#I=1/2int2xsqrt(1-(x^2)^2)dx#
#I=1/2intcos(u)sqrt(1-sin^2(u))du#
Since
#I=1/2intcos^2(u)du#
To integrate this, recall that
#I=1/4int(cos(2u)-1)du#
#I=1/4intcos(2u)du-1/4intdu#
Solving both of these integrals:
#I=1/8int2cos(2u)du-1/4u#
#I=1/8sin(2u)-1/4u#
#I=1/8(2sin(u)cos(u))-1/4u#
#I=1/4sin(u)cos(u)-1/4u#
Write the cosine function as sine, since we are working with a sine-based substitution:
#I=1/4sin(u)sqrt(1-sin^2(u))-1/4u#
Plugging in
#I=1/4(x^2)sqrt(1-(x^2)^2)-1/4arcsin(x^2)#
#I=(x^2sqrt(1-x^4)-arcsin(x^2))/4+C#