How do you integrate #intlnx/x# using substitution?
1 Answer
Dec 6, 2016
# intlnx/xdx = 1/2ln^2x+a #
Explanation:
Let
Substituting into the integral we get:
# \ \ \ \ \ intlnx/xdx = int(lnx)(1/xdx) #
# :. intlnx/xdx = int(u)(du) #
# :. intlnx/xdx = intudu #
# :. intlnx/xdx = 1/2u^2+a #
And replacing
# \ \ \ \ \ intlnx/xdx = 1/2ln^2x+a #