How do you integrate #ln(2x)#?
1 Answer
Nov 24, 2016
Explanation:
#I=intln(2x)dx#
We should use integration by parts in the absence of all other possible integration strategies. Integration by parts takes the form
#{(u=ln(2x),=>,du=2/(2x)=1/x),(dv=dx,=>,v=x):}#
Thus:
#I=uv-intvdu=xln(2x)-intx1/xdx#
#I=xln(2x)-intdx#
#I=xln(2x)-x#
#I=x(ln(2x)-1)+C#