How do you integrate #(ln x / 3)^3#?
1 Answer
Explanation:
Note that
#int(lnx/3)^3dx=1/27intln^3xdx#
Using integration by parts:
#intudv=uv-intvdu#
We let
#u=ln^3x" "=>" "du=(3ln^2x)/xdx#
#dv=(1)dx" "=>" "v=x#
This gives us:
#1/27intln^3xdx=1/27xln^3x-1/27int3ln^2xdx#
#=1/27xln^3x-1/9intln^2xdx#
Integrate
#u=ln^2x" "=>" "du=(2lnx)/xdx#
#dv=(1)dx" "=>" "v=x#
Thus,
#intln^2x=xln^2x-int2lnxdx#
Combining this and multiplying by
#1/27intln^3xdx=(xln^3x)/27-(xln^2x)/9+2/9intlnxdx#
Use integration by parts one last time:
#u=lnx" "=>" "du=1/xdx#
#dv=(1)dx" "=>" "v=x#
Thus,
#intlnxdx=xlnx-intdx=xlnx-x#
Hence,
#1/27intln^3xdx=(xln^3x)/27-(xln^2x)/9+(2xlnx)/9-(2x)/9+C#
Don't forget the constant of integration!