How do you integrate #sin(x)cos(x)#?
1 Answer
Depending on the route you take, valid results include:
#sin^2(x)/2+C# #-cos^2(x)/2+C# #-1/4cos(2x)+C#
Explanation:
There are a variety of methods we can take:
Substitution with sine:
Let
Thus:
#intunderbrace(sin(x))_uoverbrace(cos(x)dx)^(du)=intudu=u^2/2+C=color(blue)(sin^2(x)/2+C#
Substitution with cosine:
Let
Therefore:
#intsin(x)cos(x)dx=-intunderbrace(cos(x))_uoverbrace((-sin(x))dx)^(du)=-intudu=-u^2/2+C#
#=color(blue)(-cos^2(x)/2+C#
Brief interlude:
You may be wondering, well, why are both of these answers valid?
Note that:
#sin^2(x)/2+C=(1-cos^2(x))/2+C=-cos^2(x)/2+1/2+C#
However, the
#=-cos^2(x)/2+C#
One more method using simplification:
We will use the identity
#intsin(x)cos(x)dx=intsin(2x)/2dx=1/2intsin(2x)dx#
From here, let
#=1/4intsinunderbrace((2x))_u overbrace((2)dx)^(du)=1/4intsin(u)du=-1/4cos(u)+C= color(blue)(-1/4cos(2x)+C#
You can also show that this is equivalent to the other two answers using the identity