To obtain the formula for IBP, we start with the product rule:
#(u*v)' = u'*v + u*v'# where u and v are functions of x in this case
Rearranging:
#u*v' = (u*v)' - u'*v#
Integrating:
#int u*v' dx = u*v - int u'*v dx#
For this integral, we are going to set #u(x) = sin(x)# and #v'(x) = e^(2x)#
#u'(x) = cos(x)# and #v(x) = 1/2e^(2x)#
So, #int e^(2x)sinxdx = 1/2e^(2x)sin(x) - 1/2*int cos(x)e^(2x) dx#
Now do IBP again on the second term:
#u(x) = cos(x)# and #v'(x) = e^(2x)#
#u'(x) = -sin(x)# and #v(x) = 1/2e^(2x)#
#int e^(2x)sin(x)dx = 1/2e^(2x)sin(x) - 1/4e^(2x)cos(x) - 1/4*int e^(2x)sin(x)dx#
As you can see, the integral on the LHS is the same as the integral on the RHS so we collect like terms and obtain:
#5/4*int e^(2x)sin(x)dx = 1/2e^(2x)sin(x) - 1/4e^(2x)cos(x)#
# int e^(2x)sin(x)dx = 2/5e^(2x)sin(x) - 1/5e^(2x)cos(x) + C#