How do you integrate #(tanx)^4 #?
1 Answer
Oct 21, 2016
The trick with this one is to split it up into two
#int tan^4xdx#
#= int tan^2xtan^2xdx#
#= int tan^2x(sec^2x - 1)dx#
#= int sec^2x(tanx)^2 - tan^2xdx#
#= int (tanx)^2sec^2x - (sec^2x - 1)dx#
Now for the first half, you can use u-substitution (let
#=> int u^2du - int sec^2xdx + int1dx#
#= u^3/3 - tanx + x#
#= color(blue)(tan^3x/3 - tanx + x + C)#