How do you integrate #(tanx)^8#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Apr 13, 2017 # tan^7x/7-tan^5x/5+tan^3x/3-tanx+x+C.# Explanation: Let, #I=inttan^8xdx=inttan^6x(sec^2x-1)d,# #=int(tanx)^6d(tanx)-inttan^4x(sec^2x-1)dx,# #=tan^7x/7-int(tanx)^4d(tanx)+inttan^2x(sec^2x-1)dx,# #=tan^7x/7-tan^5x/5+int(tanx)^2d(tanx)-inttan^2xdx,# #=tan^7x/7-tan^5x/5+tan^3x/3-int(sec^2x-1)dx.# # :. I=tan^7x/7-tan^5x/5+tan^3x/3-tanx+x+C.# Enjoy Maths.! Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 2849 views around the world You can reuse this answer Creative Commons License