How do you integrate #tanx * sec^3x dx#?
1 Answer
Jan 15, 2017
Explanation:
We have:
#inttanxsec^3xdx#
Notice that we can write this in terms of
Make the substitution
We can rewrite the integral as such:
#=intsec^2x(secxtanxdx)=intu^2du=1/3u^3+C=1/3sec^3x+C#