As #(x^2+2x-1)/(x^3-x)=(x^2+2x-1)/(x(x+1)(x-1))#, let us convert them into partial fractions
#(x^2+2x-1)/(x^3-x)hArrA/x+B/(x+1)+C/(x-1)# or
#(x^2+2x-1)/(x^3-x)=(A(x^2-1)+B(x^2-x)+C(x^2+x))/(x(x+1)(x-1))# or
#(x^2+2x-1)/(x^3-x)=((A+B+C)x^2+(-B+C)x-A)/(x(x+1)(x-1))# i.e.
#A+B+C=1#, #-B+C=2# and #A=1#,
which gives #C=1# and #B=-1# and hence
#(x^2+2x-1)/(x^3-x)=1/x-1/(x+1)+1/(x-1)# and
#int(x^2+2x-1)/(x^3-x)dx=int[1/x-1/(x+1)+1/(x-1)]dx#
= #lnx-ln(x+1)+ln(x-1)+c#