Since the degree of the numerator is not less than the degree of the denominator, perform a long division
#color(white)(aaaa)##x^2+3x##color(white)(aaaaaaaa)##∣##x^2-4#
#color(white)(aaaa)##x^2##color(white)(aaaaaa)##-4##color(white)(aaaa)##∣##1#
#color(white)(aaaa)##0+3x##color(white)(aaa)##+4#
Therefore,
By factorising the denominator,
#(x^2+3x)/(x^2-4)=1+(3x+4)/(x^2-4)=1+(3x+4)/((x+2)(x-2))#
Now, we perform the partial fraction decomposition
#(3x+4)/((x+2)(x-2))=A/(x+2)+B/(x-2)#
#=(A(x-2)+B(x+2))/((x+2)(x-2))#
So,
#3x+4=A(x-2)+B(x+2)#
Let #x=2#, #=>#, #10=4B#, #=>#, #B=5/2#
Let #x=-2#, #=>#, #-2=-4A#, #=>#, #A=1/2#
Therefore,
#(x^2+3x)/(x^2-4)=1+(1/2)/(x+2)+(5/2)/(x-2)#
So,
#int((x^2+3x)dx)/(x^2-4)=int1dx+(1/2)intdx/(x+2)+(5/2)intdx/(x-2)#
#=x+1/2ln(∣x+2∣)+5/2ln(∣x-2∣)+C#