How do you integrate # x^2/ [x^2+x+4]# using partial fractions?
1 Answer
where
Explanation:
First, write out the partial fractions
#frac{x^2}{x^2+x+4} = frac{x^2+(x+4) - (x+4)}{x^2+x+4}#
#= 1 - frac{x+4}{x^2+x+4}#
Fractions of the form
#f'(x) = 2x + 1#
Rewriting the partial fraction,
#frac{x^2}{x^2+x+4} = 1 - 1/2 frac{2(x+4)}{x^2+x+4}#
#= 1 - 1/2 frac{2x+8}{x^2+x+4}#
#= 1 - 1/2 frac{2x+1}{x^2+x+4} + frac{7}{2} frac{1}{x^2+x+4}#
The last bit requires completing the square, as fractions of the form
#x^2 + x + 4 = (x + 1/2)^2 + 15/4#
Rewriting the partial fraction,
#frac{x^2}{x^2+x+4} = 1 - 1/2 frac{2x+1}{x^2+x+4} + frac{14}{(2x + 1)^2 + 15}#
Now, performing the integration
#int frac{x^2}{x^2+x+4} "d"x = int "d"x - 1/2 int frac{2x+1}{x^2+x+4} "d"x #
#+ 7/2 int frac{1}{(x + 1/2)^2 + 15/4} "d"x#
#= x - 1/2 ln(x^2+x+4) + 7/sqrt15 tan^{-1}(frac{2x + 1}{sqrt15}) + c#
where