How do you integrate #(x^3+2)/(x^2-x)# using partial fractions?

1 Answer
Oct 18, 2016

#=x^2/2+x-2lnx+3ln(x-1)+C#

Explanation:

First make a long division to determine
#(x^3+2)/(x^2-x)=x+1+(x+2)/(x^2-x)#
To simplify the fraction we use partial fraction
#(x+2)/(x^2-x)=(x+2)/(x(x-1))=A/x+B/(x-1)=(A(x-1)+Bx)/(x(x-1))#
So we determine A and B
#x+2=A(x-1)+Bx#
Cmparing the coefficients, we find
#1=A+B# and #2=-A# and we conclude #B=3#
#int((x^3+2)dx)/(x^2-x)=int(x+1)dx-int2dx/x+int3dx/(x-1)#
#=x^2/2+x-2lnx+3ln(x-1)+C#