How do you integrate #((x^3 + 7) / x^2) dx#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Andrea S. Nov 30, 2016 #int((x^3+7)/x^2)dx= frac (x^3-14) (2x)# Explanation: #int((x^3+7)/x^2)dx = int (x^3/x^2+7/x^2)dx = int xdx+7int x^(-2)dx # #= x^2/2-7x^-1 = x^2/2-7/x = frac (x^3-14) (2x)# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 5334 views around the world You can reuse this answer Creative Commons License