How do you integrate #x^3/sqrt(144-x^2)#?
1 Answer
Aug 23, 2015
Use substitution with
Explanation:
Let
# = -1/2 int x^2/sqrt(144-x^2)" "(-2 x)dx#
# = -1/2 int (144- u)/sqrtu" "du#
# = -1/2 int (144/sqrtu - sqrtu)" "du#
# = -1/2 int (144u^(-1/2) -u^(1/2))" "du#
# = -1/2[288u^(1/2)-2/3u^(3/2)] +C#
# = -144(144-x^2)^(1/2)+ 1/3(144-x^2)^(3/2) +C#
# = -144sqrt(144-x^2)+ 1/3(sqrt(144-x^2))^3 +C#