How do you integrate #x / (x² - x - 2)# using partial fractions?

1 Answer
Jun 4, 2017

# 1/3ln|(x-2)^2(x+1)| + C#

Explanation:

First, separate the fraction using partial fraction separation:

#x/(x^2-x-2) = x/((x-2)(x+1))#

#x/((x-2)(x+1))=A/(x-2) + B/(x+1)#

#x = A(x+1) + B(x-2)#

Set #x=2# to solve for A:

#2 = A(2+1) + B(2-2)#

#2 = 3A#

#2/3 = A#

Set #x=-1# to solve for B:

#-1 = A(-1+1) + B(-1-2)#

#-1 = -3B#

#1/3 = B#

Therefore, our fraction separates into:

#x/(x^2-x+2) = 2/(3(x-2)) + 1/(3(x+1))#

Finally, integrate:

#int(2/(3(x-2))+1/(3(x+1)))dx#

#= 2/3ln|x-2| + 1/3ln|x+1| + C#

#= 1/3(2ln|x-2| + ln|x+1|) + C#

#= 1/3ln|(x-2)^2(x+1)| + C#

Final Answer