How do you long divide #(6x^3+5x^2+2x+12) div (2x+3)#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer P dilip_k Mar 4, 2016 #3x^2-2x+4# Explanation: #(6x^3+5x^2+2x+12)/(2x+3)# #=(3x^2(2x+3)-9x^2+5x^2+2x+12)/(2x+3)# #=(3x^2(2x+3)-4x^2+2x+12)/(2x+3)# #=(3x^2(2x+3)-2x(2x+3)+6x+2x+12)/(2x+3)# #=(3x^2(2x+3)-2x(2x+3)+8x+12)/(2x+3)# #=(3x^2(2x+3)-2x(2x+3)+4(2x+3))/(2x+3)# #=(cancel(2x+3))((3x^2-2x+4))/cancel(2x+3)# #3x^2-2x+4# Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 1564 views around the world You can reuse this answer Creative Commons License