How do you multiply (3z+12)/(8z^3)*(16z^3)/(9z+36)3z+128z316z39z+36?

2 Answers

2/323

Explanation:

Given that

\frac{3z+12}{8z^3}\cdot \frac{16z^3}{9z+36}3z+128z316z39z+36

=\frac{3(z+4)}{8z^3}\cdot \frac{16z^3}{9(z+4)}=3(z+4)8z316z39(z+4)

=(\frac{3\cdot 16}{8\cdot 9})(\frac{z+4}{z+4}) (\frac{z^3}{z^3})=(31689)(z+4z+4)(z3z3)

=(2/3)(1)(1)=(23)(1)(1)

=2/3=23

Jul 26, 2018

2/323

Explanation:

(3z+12)/(8z^3)*(16z^3)/(9z+36)3z+128z316z39z+36

=(3z+12)/(9z+36)*(16z^3)/(8z^3)3z+129z+3616z38z3

=(3*(z+4))/(9*(z+4))*23(z+4)9(z+4)2

=1/3*2132

=2/323