How do you multiply #(r+3)^2/(4r^3s)div(r+3)/(rs)#?

2 Answers
Mar 29, 2017

Answer:

#= (r + 3)/(4r^2 #

Explanation:

#(r + 3)^2/(4r^3s) -:(r + 3)/(rs)#

change the sign #-: to "X"#, then change the position for the RHS expressions

#(r + 3)^cancel2/(4r^cancel3 cancels) X cancel(rs)/cancel(r + 3)#

#= (r + 3)/(4r^2 #

Mar 29, 2017

Answer:

#color(red)((r+3)/(4r^2)#

Explanation:

#((r+3)^2)/(4r^3s)-:(r+3)/(rs)#

#:.=((r+3)(r+3))/(4r^3s)-:(r+3)/(rs)#

#:.=((r+3)(cancel(r+3))^color(red)1)/(4cancel(r^3)^color(red)2cancels^1) xx (cancel(rs)^color(red)1)/cancel(r+3)^color(red)1#

#:.=color(red)((r+3)/(4r^2)#