How do you multiply #(x^4-x^3+x^2-x)/(2x^3+2x^2+x+1)div (x^3-4x^2+x-4)/(2x^3-8x^2+x-4)#?
2 Answers
Explanation:
Factorise each expression first. Each has 4 terms - use grouping.
Group into pairs.
Take out the common factors
change
Take out the common brackets and factors
Cancel like factors
#(x^4-x^3+x^2-x)/(2x^3+2x^2+x+1) -: (x^3-4x^2+x-4)/(2x^3-8x^2+x-4)#
#=(x(x-1))/(x+1)#
#=x-2+2/(x+1)#
with exclusion:
Explanation:
#(x^4-x^3+x^2-x)/(2x^3+2x^2+x+1) -: (x^3-4x^2+x-4)/(2x^3-8x^2+x-4)#
#=(x^4-x^3+x^2-x)/(2x^3+2x^2+x+1) xx (2x^3-8x^2+x-4)/(x^3-4x^2+x-4)#
#=(x((x^3-x^2)+(x-1)))/((2x^3+2x^2)+(x+1)) xx ((2x^3-8x^2)+(x-4))/((x^3-4x^2)+(x-4))#
#=(x(x^2(x-1)+1(x-1)))/(2x^2(x+1)+1(x+1)) xx (2x^2(x-4)+1(x-4))/(x^2(x-4)+1(x-4))#
#=(xcolor(red)(cancel(color(black)((x^2+1))))(x-1))/(color(orange)(cancel(color(black)((2x^2+1))))(x+1)) xx (color(orange)(cancel(color(black)((2x^2+1))))color(purple)(cancel(color(black)((x-4)))))/(color(red)(cancel(color(black)((x^2+1))))color(purple)(cancel(color(black)((x-4)))#
#=color(blue)((x(x-1))/(x+1))#
#=(x^2+x-2x-2+2)/(x+1)#
#=(x(x+1)-2(x+1)+2)/(x+1)#
#=((x-2)(x+1)+2)/(x+1)#
#=color(blue)(x-2+2/(x+1))#
with exclusion:
This value needs to be excluded because when
If
#x != i" "# and#" "x != sqrt(2)/2i#
These values would result in