How do you normalize #( i + 7 j + 4 k )#?

1 Answer
Mar 8, 2016

Answer:

The normalized vector is the unit vector form to you vector, thus:
#vec(u) = 1/sqrt(66) ( i + 7j +4k) #

Explanation:

Normalization implies finding the unit vector expression to you vector quantity. So given you vector:
#vec(v) = i + 7j +4k# the unit vector is:
#vec(u) = 1/|vec(v)| vec(v); |vec(v)| = sqrt(1 + 49 + 16) = sqrt(66)#
#vec(u) = 1/sqrt(66) ( i + 7j +4k) #
Your vector can be written as:
# vec(v) = |vec(v)| vec(u) = sqrt(66) vec(u)#