How do you prove #(1+cos(alpha))/(sin alpha) = (sin alpha)/(1-cos(alpha))#?

1 Answer
May 16, 2017

See below

Explanation:

#(1+cosalpha)/sinalpha#

#=((1+cosalpha)(1-cosalpha))/(sinalpha(1-cosalpha))#

#=(1-cos^2alpha)/(sinalpha(1-cosalpha))#

#=sin^2alpha/(sinalpha(1-cosalpha))#

#=sinalpha/(1-cosalpha)#

#therefore(1+cosalpha)/sinalpha-=sinalpha/(1-cosalpha)# #" "sf(QED)#