How do you prove #cos (theta + 2pi) = cos theta #?
1 Answer
May 4, 2016
see explanation
Explanation:
Using the appropriate
#color(blue)" Addition formula "#
#color(red)(|bar(ul(color(white)(a/a)color(black)(cos(A±B)=cosAcosB∓sinAsinB)color(white)(a/a)|)))#
#rArrcos(theta+2pi)=costhetacos(2pi)-sinthetasin(2pi)# now :
#cos(2pi)=1" and " sin(2pi)=0#
#rArrcos(theta+2pi)=costheta .1-sintheta .0=costheta#