How do you prove #cos(x) / (1-sin(x)) = sec(x) + tan(x)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer sente Dec 17, 2015 Starting from the right hand side: #sec(x) + tan(x) = 1/cos(x) + sin(x)/cos(x)# #= (1+sin(x))/cos(x)# #= ((1+sin(x))(1-sin(x)))/(cos(x)(1-sin(x)))# #=(1 - sin^2(x))/(cos(x)(1-sin(x)))# #= cos^2(x)/(cos(x)(1-sin(x)))# #= cos(x)/(1-sin(x))# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1564 views around the world You can reuse this answer Creative Commons License