How do you prove: #("cosec"(x - B))/ sec(x + B) = (1 - tan x tan B) / (tan x - tan B)# ?
1 Answer
We seek to prove the identity:
# ("cosec"(x - B))/ sec(x + B) = (1 - tan x tan B) / (tan x - tan B)#
Consider the LHS:
# LHS = ("cosec"(x - B))/ sec(x + B)#
Using the fundamental definitions of trigonometric functions:
# LHS = (1/sin(x - B))/ (1/cos(x + B)) #
# \ \ \ \ \ \ \ \ = (cos(x + B))/(sin(x - B)) #
Now we use the sine and cosine sum of multiple angle identities:
# cos(A+B) -= cosAcosB - sinAsinB #
# sin(A+B) -= sinAcosB + cosAsinB #
So that:
# LHS = (cosxcosB-sinxsinB)/(sinxcosB-cosxsinB) #
# \ \ \ \ \ \ \ \ = (cosxcosB-sinxsinB)/(sinxcosB-cosxsinB) * (1/(cosxcosB))/(1/(cosxcosB)) #
# \ \ \ \ \ \ \ \ = ((cosxcosB)/(cosxcosB) - (sinxsinB)/(cosxcosB) ) /( (sinxcosB)/(cosxcosB) - (cosxsinB)/(cosxcosB) ) #
# \ \ \ \ \ \ \ \ = (1 - sinx/cosx * sinB/cosB ) /( sinx/cosx- sinB/cosB ) #
# \ \ \ \ \ \ \ \ = (1 - tanx \ tanB ) /( tanx- tanB ) #
# \ \ \ \ \ \ \ \ = RHS \ \ \ # QED