How do you prove #sec^-1x+csc^-1x=pi/2#?

2 Answers
Oct 20, 2016

Please see the explanation.

Explanation:

Prove:

#sec^-1(x) + csc^-1(x) = pi/2#

Use the identity #csc^-1(x) = pi/2 - sec^-1(x)#:

#sec^-1(x) + pi/2 - sec^-1(x) = pi/2#

#pi/2 = pi/2#

Q.E.D.

Oct 20, 2016

use the fact that csc is the complementary function of sec.

Explanation:

let
#sec^-1x=y#

#=>x=secy#

#=>x=csc(pi/2-y)#
#=>csc^-1x=pi/2-y#

substituting back for y

#csc^-1x=pi/2-sec^-1x#

hence #sec^-1x+csc^-1x=pi/2#

as required.