How do you prove #(secx)/(sinx)-(sinx)/(cosx)=cotx#?

2 Answers
May 3, 2018

#LHS=(secx)/(sinx)-(sinx)/(cosx)#

#=1/(sinxcosx)-(sinx)/(cosx)#

#=(1-sin^2x)/(sinxcosx)#

#=cos^2x/(sinxcosx)#

#=cosx/sinx#

#=cotx=RHS#

May 4, 2018

#secx/sinx - sinx/cosx = cotx#

I'll be simplifying down the LHS of the equation to get to the RHS of the equation. The #color(blue)("blue color")# refers to what is being changed.

First, we know that #color(blue)(sinx/cosx)# is the same as #color(blue)(tanx)#:
#secx/sinx - color(blue)(tanx)#

Now, multiply #color(blue)(sinx/sinx)# to #color(blue)(tanx)# so that both expressions have the same denominator:
#secx/sinx - (tanxcolor(blue)(sinx))/color(blue)(sinx)#

Combine both expressions to one denominator:
#(secx - tanxsinx)/sinx#

We know that #color(blue)(secx = 1/cosx)# and #color(blue)(tanx = sinx/cosx)#:
#(color(blue)(1/cosx) - color(blue)(sinx/cosx)*sinx)/sinx#

Multiply #color(blue)sinx# with #color(blue)sinx#:
#(1/cosx - color(blue)(sin^2x)/cosx)/sinx#

Combine numerator and denominator (from the top)
#(color(blue)(1-sin^2x)/cosx)/sinx#

From the Pythagorean Identities, we know that #color(blue)(1-sin^2x = cos^2x)#:
#(color(blue)(cos^2x/cosx))/sinx#

Divide #color(blue)(cos^2x/cosx)#:
#(color(blue)(cosx/1))/sinx#

Simplify:
#color(blue)(cosx)/sinx#

We know that #color(blue)(cosx/sinx = cotx)#:
#color(blue)cotx#

Now, the left hand side is equivalent to the right hand side, so we have proven that #secx/sinx - sinx/cosx = cotx#.

Hope this helps!