How do you prove #sin(x+[pi/6])*sin(x-[pi/6]) = (sin x)^2 - 1/4#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub May 4, 2016 see below Explanation: Use Properties: #sin(A+B)=sinAcosB+cosAsinB# #sin(A-B)=sin A cos B-cos A sin B# Left Side:#=(sinxcos(pi/6) + cosx sin (pi/6)) xx (sinxcos(pi/6) - cosx sin (pi/6))# #=sin^2xcos^2(pi/6)-cos^2xsin^2(pi/6)# #=sin^2x * (sqrt3/2)^2 - cos^2x * (1/2)^2# #=3/4 sin^2x-1/4 cos^2 x# #=3/4 sin^2 x-1/4(1-sin^2x)# #=3/4 sin^2 x-1/4+1/4 sin^2 x# #=(3/4 sin^2 x+1/4 sin^2 x)-1/4# #=sin^2x-1/4# #=# Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1684 views around the world You can reuse this answer Creative Commons License