Using the trigonometric identity
#sin(alpha + beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta)#
#sin(x + pi/6) = sin(x)cos(pi/6) + cos(x)sin(pi/6)#
and
#sin(x - pi/6) = sin(x)cos(-pi/6) + cos(x)sin(-pi/6)#
As the sine function is odd (#sin(-x) = -sin(x)#) and the cosine function is even (#cos(-x) = cos(x)#), we get
#sin(x - pi/6) = sin(x)cos(pi/6) - cos(x)sin(pi/6)#
Thus, adding gives us
#sin(x + pi/6) + sin(x - pi/6) = 2sin(x)cos(pi/6)#
As #cos(pi/6) = sqrt(3)/2# we get the result
#sin(x + pi/6) + sin(x - pi/6) = sqrt(3)sin(x)#