How do you prove #tan^-1x+tan^-1(1/x)=pi/2# for x>0?

2 Answers
Jan 13, 2017

we first need to know the following relationships between #tantheta# &#cot theta#

we have:

#cottheta=1/tantheta#

also

#cottheta=tan(pi/2-theta)#

Explanation:

let #y=tan^(-1)x=>x=tany#

#x=tany=>1/x=1/tany=coty#

#1/x=coty=tan(pi/2-y)#

#:.pi/2-y=tan^(-1)(1/x)#

but #y=tan^(-1)x#

so #pi/2=tan^(-1)(1/x)+tan^(-1)x#

as reqd.

Jan 14, 2017

Take the addition formula for tangent:

#tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))#

Rearranging:

#a+b=tan^-1((tan(a)+tan(b))/(1-tan(a)tan(b)))#

Let #m=tan(a)# and #n=tan(b)#. These both imply that #a=tan^-1(m)# and #b=tan^-1(n)#.

Plugging in all these values into the before formula gives:

#tan^-1(m)+tan^-1(n)=tan^-1((m+n)/(1-mn))#

This is applicable to the question, which asks about #tan^-1(x)+tan^-1(1/x)#. According to the rule we've just derived:

#tan^-1(x)+tan^-1(1/x)=tan^-1((x+1/x)/(1-x(1/x)))#

#tan^-1(x)+tan^-1(1/x)=tan^-1((x+1/x)/(1-1))#

Since the denominator inside the inverse tangent function on the right-hand side is #0#, we see that the argument of the function is undefined.

For #x>0# and using the restricting the range of #tan^-1(x)# to #(-pi/2,pi/2)#, we see that tangent is undefined at #pi/2#, so the inverse tangent of an undefined value is also #pi/2#.

Therefore:

#tan^-1(x)+tan^-1(1/x)=pi/2#