How do you prove #tan(x/2)= sinx+cosxcotx-cotx#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Topscooter Dec 21, 2015 Develop the right side. Explanation: We know that #tan(x/2) = (1 - cos(x))/sin(x)#. So we develop the right side of the equality. #cot(x) = 1/tan(x)# so : #sin(x) + cos(x)cot(x) - cot(x) = (sin^2(x) + cos^2(x) - cos(x))/sin(x) = (1-cos(x))/sin(x) = tan(x/2)#. Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1332 views around the world You can reuse this answer Creative Commons License