Suppose it is convergent and put:
S = int_0^(pi/2) ln(sin x)dx
Substitute t=pi/2-x
S=-int_(pi/2)^0ln(sin(pi/2-t))dt = int_0^(pi/2) ln( cos t )dt
Summing the two expressions:
2S = int_0^(pi/2) ln(sin x)dx + int_0^(pi/2) ln( cos x )dx
and as the integral is linear:
2S = int_0^(pi/2) ln(sin x)dx + ln( cos x )dx
using the properties of logarithms and the formula for the sine of the double angle:
2S = int_0^(pi/2) ln(sin x cos x )dx = int_0^(pi/2) ln(1/2sin(2x) )dx =
int_0^(pi/2) ln(1/2)dx +int_0^(pi/2) ln(sin(2x) )dx =
= pi/2ln(1/2) + int_0^(pi/2) ln(sin(2x) )dx
Let's evaluate this last integral, by splitting in two half intervals and substituting t=2x in the first and t=2x-pi/2 in the second:
int_0^(pi/2) ln(sin(2x) )dx =int_0^(pi/4) ln(sin(2x) )dx+int_(pi/4)^(pi/2) ln(sin(2x) )dx =
=1/2int_0^(pi/2) ln(sin(t) )dt+1/2int_0^(pi/2) ln(sin(t+pi/2) )dt =
=1/2int_0^(pi/2) ln(sin(t) )dt+1/2int_0^(pi/2) ln(cost )dt = 1/2S+1/2S = S
Substituting this in the formula above:
2S = pi/2ln(1/2) + S
that is:
S = pi/2ln(1/2)