How do you prove that the limit of #(x^2 - 4x + 5) = 1# as x approaches 2 using the epsilon delta proof?

1 Answer
May 10, 2017

See below.

Explanation:

Problem:
#lim_(x->2)(x^2-4x+5)=1#

Work:
#|(x^2-4x+5)-1|< epsilon#
#|x^2-4x+4|< epsilon#
#|(x-2)|^2< epsilon#
#|x-2|< sqrt(epsilon)#

Proof:

#AA# #epsilon>0#, #EE# #delta>0# such that
if #0<|x-2|< delta#, then #|(x^2-4x+5)-1|< epsilon#
Given #0<|x-2|< delta#, let #delta=sqrt(epsilon)#
#|x-2|< sqrt(epsilon)#
#|x-2|^2< epsilon#
#|(x-2)^2|< epsilon#
#|x^2-4x+4|< epsilon#
#|(x^2-4x+5)-1|< epsilon#
#thereforelim_(x->2)(x^2-4x+5)=1#