How do you prove that the limit of #(x^3 - 3) = 5# as x approaches 2 using the epsilon delta proof?

1 Answer
Jan 10, 2017

For any #epsilon >0#, we fix #delta_epsilon# such that:

#0 < delta_epsilon < min(1, epsilon/19) #

Explanation:

#f(x) = (x^3-3) # is a polynomial function therefore continuous in all of #RR#, so we know that:

#lim_(x->2) f(x) = f(2) = 5#

To give a formal proof we analyze the expression #abs (f(x) -5)# around #x=2# expressing #x# as #2+Deltax#:

#abs (f(x) -5) = abs ((2+Deltax)^3-3-5) =abs (8+12(Deltax)+6(Deltax)^2+(Deltax)^3-8)=abs(12(Deltax)+6(Deltax)^2+(Deltax)^3)#

Now chosen any #epsilon >0#, we fix #delta_epsilon# such that:

#0 < delta_epsilon < min(1, epsilon/19) #

and as for #x in (2-delta_epsilon,2+delta_epsilon)# we have #|Deltax| < delta_epsilon#

#abs (f(x) -5) = abs(12(Deltax)+6(Deltax)^2+(Deltax)^3)<= 12abs(Deltax)+6abs(Deltax)^2+abs(Deltax)^3< 12delta_epsilon+6delta_epsilon^2+delta_epsilon^3#

now, as #delta_epsilon < 1# we have #delta_epsilon^n < delta_epsilon#, so:

#abs (f(x) -5) < 12delta_epsilon+6delta_epsilon^2+delta_epsilon^3 < 12delta_epsilon+6delta_epsilon+delta_epsilon < 19delta_epsilon < epsilon#

And the limit is proved.