How do you show by substitution that the point (π /2, 1) lies on the curves of : #y=(2x)/pi#?

1 Answer
Oct 17, 2015

To show, that a point #(x,y)# lies on a curve #y=f(x)# you have to substitute #x# and #y# in the formula and check if left side equals right.

Explanation:

If you substitute you get:

#L=1#

#R=(2*(pi/2))/pi#
#R=pi/pi#

#R=1#

#L=R#

Left side equals right, so the point lies on the curve.

If you tried to calculate it for example for: #(0,1)# you would get:

#L=y=1#

#R=(2x)/pi=(2*0)/pi=0/pi=0#

#0!=1#, so the point #(0,1)# does not lie on the curve.