How do you simplify #1/2 - 1/3 times 1/4 + 1/5 1/6 ÷ 1/6#?

1 Answer
Nov 1, 2017

Answer:

See Process below;

Explanation:

Following the rule of PEDMAS

#1/2 - 1/3 xx 1/4 + 1/5 1/6 div 1/6#

#1/5 1/6 = 1/5 cdot 1/6# since there is no symbol attached!

Hence;

#1/2 - 1/3 xx 1/4 + 1/5 cdot 1/6 div 1/6#

#1/2 - 1/3 xx 1/4 + 1/5 xx 1/6 div 1/6#

So we'll take it step wise..

Since there are Parenthesis, Exponents.. we'll go to;

Division

#1/2 - 1/3 xx 1/4 + 1/5 xx color(red)(1/6 div 1/6)#

#1/2 - 1/3 xx 1/4 + 1/5 xx (color(red)(1/6 xx 6/1)) -> "Transposed!"#

#1/2 - 1/3 xx 1/4 + 1/5 xx color(red)(1/cancel6 xx cancel6/1)#

#1/2 - 1/3 xx 1/4 + 1/5 xx 1/1#

Multiplication

#1/2 - color(blue)(1/3 xx 1/4) + color(blue)(1/5 xx 1/1)#

#1/2 - 1/12 + 1/5#

Addition

#1/2 - color(orange)(1/12 + 1/5)#

Note, Addition and Subtraction deals with finding the LCM..

LCM of #12 and 5 = 60#

#1/2 - color(orange)((5 + 12)/60)#

#1/2 - 17/60#

Subtraction

#color(green)(1/2 - 17/60)#

LCM of #2 and 60 = 60#

#color(green)((30 - 17)/60)#

#13/60#