How do you simplify # 125v^2 = t#?

2 Answers
Jul 19, 2018

Answer:

#v=\sqrt{t}/(5\sqrt5)#

Explanation:

Assuming you are solving for #v#:
#125v^2=t#

#(\cancel(125)v^2)/\cancel(125)=t/125#

#v^2=t/125#

#\sqrt{v^2}=\sqrt{t/125}#

#v=\sqrt{t/(5*5*5)}=\sqrt{t}/\sqrt{25*5}=\sqrt{t}/(5\sqrt{5})#

Jul 19, 2018

Answer:

#v=+-sqrt(5t)/25#

Explanation:

To isolate #v#:

#v^2=t/125#

#v=+-sqrt(t/125)#

#v= +-(sqrtt)/(5sqrt5)*sqrt5/sqrt5= +-sqrt(5t)/25#