How do you simplify #(12a^2bx)/(30ax^2)#?

1 Answer
Jul 23, 2015

Answer:

#=color(blue)((2ab)/(5x)#

Explanation:

#(12a^2bx)/(30ax^2)#

#=((12b)a^2x)/((30)ax^2)#

  • property: #color(blue)(a^m/a^n=a^(m-n)#

Applying this property to the exponents of #a# and #x# we get:

#((12b)/30) * color(blue)(a^((2-1)) * x^((1-2))#

#=((12b)/30) * color(blue)(a^1x^-1#

  • property: #color(blue)(a^-1 = 1/a#

#=(12ab)/(30x)#

#=color(blue)((2ab)/(5x)#