How do you simplify (-12t^-1 u^5 v^-4 )/(2t^-3 u v^5)?

1 Answer
Apr 7, 2018

Simplified: -(6t^2u^4)/v^9

Explanation:

Expression: (-12t^-1u^5v^-4)/(2t^-3uv^5)

Apply fraction rule (-a)/b = -a/b

=-(12t^-1u^5v^-4)/(2t^-3uv^5)

Divide the numbers 12/2 = 6

=-(6t^-1u^5v^-4)/(t^-3uv^5)

Apply exponent rule: x^a/x^b = x^(a-b)

=-(6t^2u^5v^-4)/(uv^5)

Cancel the common factor "u"

=-(6t^2u^4v^-4)/v^5

Apply exponent rule: x^a/x^b=x(a-b) and x^-a = 1/x^a

Answer =-(6t^2u^4)/v^9

~ Alex