How do you simplify #(14y^3)/(7y)#?

2 Answers
Jun 6, 2018

Answer:

#(14y^3)/(7y)=color(blue)(2y^2#

Explanation:

Simplify:

#(14y^3)/(7y)#

Apply quotient rule of exponents: #a^m/a^n=a^(m-n)#

#(14y^(3-1))/7#

#(14y^2)/7#

Simplify #14/7# to #2#.

#2y^2#

Jun 6, 2018

Answer:

#2y^2#

Explanation:

#(14y^3)/(7y)#

first use Commutative Property:

#(ab)/(cd) = a/c*b/d#:

#(14y^3)/(7y) = 14/7*y^3/y =2*y^3/y#

now use the Quotient Rule of Exponents:

#a^n/a^m=a^(n-m)# and realize that #y=y^1#

#2*y^3/y=2*y^3/y^1=2*y^(3-1)=2y^2#